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Weintraub WS, Fahed AC, Rumsfeld JS. Circulation Research. In Press. 



Decline in Cardiovascular Deaths
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Nabel E and  Braunwald E. NEJM 2012 



Evidence-Based Therapies (1980-2000)
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Translational Medicine
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www.ncats.nih.gov

Berwick DW et al. Health Affairs 2008

Bench to Bedside to Population

http://www.ncats.nih.gov/


Yet … 

Even highly efficacious therapies have heterogeneity of effect at the 

individual level

Significant variation in the use of evidence-based therapies and 

outcomes in routine clinical practice 

Drug development is a very lengthy process

…

…

…
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The Promise of Big Data 

Precision Medicine 

Artificial Intelligence

Improved Translational 

Medicine

…

…

…

…
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Hype or Real?



Sources of Big Data in Healthcare  

• Electronic Health Records (EHRs)

• Wearables, Apps and Biosensors (IoTs)

• Genomic data 

• Insurance providers (claims, pharmacies, etc)

• Other clinical data (decision support tools, administrative data, etc) 

• Social Media

• Web of knowledge 
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Zettabyte levels (1021)

Lima FV and Fahed AC. Harnessing the Power of Big Data in Healthcare. Cardiology Magazine 2018. 



Spectrum of Big Data & Machine Learning 
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Beam A and Kohane I. JAMA 2018



Types of Genomic Data 
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Whole-Genome 

Genotyping

Whole-Exome 

Sequencing

Whole-Genome 

Sequencing 

Array with 100,000- 1 millions SNPs

Imputation:  >90 million SNPs 

Coding part (1%) of the genome 

All exons of all genes 
Entirety of the genome

Common variation   (allele frequency >1%) Rare coding  variation 
Rare and Common disease 

Noncoding rare variation 

GWAS, Mendelian Randomization, 

Polygenic Risk Scores 

Rare disease diagnosis, 

discovery of novel rare loss of 

function

Role of noncoding DNA

~ 50 USD ~ 400 USD ~ 1500 USD 

Public data +++++++ Public data ++++++++ Public data emerging 



Growth and Size of Molecular Data 
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Wainberg et al. Nature Biotechnology. 2018



The Rise of the Biobanks
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UK Biobank 500,0000 

USA 1,000,000 USA 1,000,000

Khera AV and Kathiresan S. Nature Reviews Genetics. 2017



Democratization of Genomic Data
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Ben Neale



UKBB GWAS bot
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Ferrence PA. ACC.org Expert Analysis 

Ferrence PA. ACC.org Expert Analysis 



Polygenic Risk Scores (PRS)

Weighted sum of number of risk alleles carried by an individual

• Sum of the risk alleles (X)

• Measured effects as detected by GWAS (β)
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Y = β1X1 + β2X2 + β3X3 ….



CAD Polygenic Risk Score 

LDpred method(>6 million alleles)
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Khera AV et al. Nature Genetics 2018 



Atrial Fibrillation, Type 2 Diabetes, 

Inflammatory Bowel Disease, Breast Cancer

18Khera AV et al. Nature Genetics 2018 



Polygenic Risk Prediction
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Khera AV et al. Nature Genetics 2018

https://pged.org/direct-to-consumer-genetic-testing/

20% of the study population are at ≥ threefold 

increased risk for at least 1 of the 5 diseases studied  ! 

“The First” risk factor ~100 USD

Direct to Consumer Genetics 

https://pged.org/direct-to-consumer-genetic-testing/


Mendelian Randomization
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Genetic 

Instrument 

Confounders

Exposure Outcome
CAUSALNOT CAUSAL



Mendelian Randomization
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SNPs 

associated 

with LDL

LDL CVD
CAUSAL



Mendelian Randomization
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SNPs 

associated 

with HDL

HDL CVD
CAUSALNOT CAUSAL



Human Knockout Project 

• Exome sequencing of 10,503 Pakistani subjects

• Identify individuals carrying predicted homozygous loss-of-function mutations 

• Perform phenotypic analysis of >200 biochemical disease traits 

• e.g. APOC3 hom pLoF low fasting TG and blunted post-prandial lipaemia
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Safety check for drug 

development 



Phenome Wide Association Studies 

(PheWAS)

Association of 

SNPs with 

Medical 

Diagnoses and 

Clinical Measures 

in the EHR
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Verma A. et al. AJHG 2018



Pitfalls of Big Data and ML 

• Improved generation of hypotheses 

– But burden of proof remains on the basic scientist 

• Polygenic risk implementation in care

– Will it change outcomes? 

• Biobanks phenotypic classification (case/control definitions)

• EHR/Administrative data has inherent biases of observational data 

– Informative missing data

– Risk of false positives and negatives (i.e. misclassification)

– Treatment selection bias i.e. unmeasured confounding variables
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Data Science in Academic Health Centers 
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Source: Twitter @AndrewLBeam



Doctors have a ‘hunch’ and it matters! 
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Opportunity for Academic Health Centers
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The triple aim:

care, health, 

and cost

• Data Science as part of the framework of 

translational research

• Essential basic, translational and epidemiologic 

research for new technologies

• Unique partnerships with industry

• Products that are cost-effective, scientifically 

solid, and needed to advance patient care 



The new med school classroom? 
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• Computationally-

Enabled Medicine 

• “Pathways” curriculum

• Harvard Medical School 

3rd year students 

https://hms.harvard.edu/news/knowing-unknown

https://hms.harvard.edu/news/knowing-unknown


Thank you 

@aklfahed

fahed@mail.harvard.edu
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Mendelian Randomization
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Ferrence PA. ACC.org Expert Analysis 



Integrating Clinical and Polygenic Risk Prediction
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Torkamani A et al. Nature Reviews Genetics 2018 



Timeline of Molecular Data
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Wainberg et al. Nature Biotechnology. 2018



Take Home
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“ Machine Learning should try to do: 

1- What doctors cannot do

2 What doctors do NOT what to do ”



Not all Data are Created Equal 

Low Quality for ML

• EHR 

• Administrative Data  

35

Good Quality for ML 

• Image interpretation 

– CT

– MRI

– Echocardiography

• Detection of Dysrhythmias 

– Cardiac rhythm 

• Wearables/Biosensors 

– HR/ Other physiological data

• Molecular data  


