Translational Medicine in the Era of Big Data: Hype or Real?

AAHCI MENA Regional Conference September 27, 2018

AKL FAHED, MD, MPH

@aklfahed

Corrigan Minehan Heart Center

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Massachusetts Institute of Technology

None

2

The Promise of Big Data

Genomics

- Polygenic Risk Scores
- Mendelian Randomization
- Human Knockout Project
- Phenome-Wide Association Studies
- Challenges and Pitfalls
- Opportunity for Academic Health Centers

Decline in Cardiovascular Deaths

Year

Nabel E and Braunwald E. NEJM 2012

Evidence-Based Therapies (1980-2000)

SPECIAL ARTICLE

The NEW ENGLAND JOURNAL of MEDICINE

Explaining the Decrease in U.S. Deaths from Coronary Disease, 1980–2000

Earl S. Ford, M.D., M.P.H., Umed A. Ajani, M.B., B.S., M.P.H., Janet B. Croft, Ph.D., Julia A. Critchley, D.Phil., M.Sc., Darwin R. Labarthe, M.D., M.P.H., Ph.D., Thomas E. Kottke, M.D., Wayne H. Giles, M.D., M.S., and Simon Capewell, M.D.

Translational Medicine

Bench to Bedside to Population

www.ncats.nih.gov Berwick DW et al. Health Affairs 2008

Even highly efficacious therapies have heterogeneity of effect at the individual level

Significant variation in the use of evidence-based therapies and outcomes in routine clinical practice

Drug development is a very lengthy process

...

...

The Promise of Big Data

Precision Medicine

Artificial Intelligence

Improved Translational Medicine

- - -

...

. . .

Hype or Real?

MGH GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

Sources of Big Data in Healthcare

- Electronic Health Records (EHRs)
- Wearables, Apps and Biosensors (IoTs)
- Genomic data
- Insurance providers (claims, pharmacies, etc)
- Other clinical data (decision support tools, administrative data, etc)
- Social Media
- Web of knowledge

Spectrum of Big Data & Machine Learning

Figure. The Axes of Machine Learning and Big Data

- 11 Netflix Prize winner (2006)
 - (12) Google Search (1998)
- (5) ImageNet computer vision models (2012-2017)
 (13) Amazon product recommendation (2003)
- 6 Google AlphaGo (2015)

(3) ATM check readers (1998)

7 Facebook Photo Tagger (2015)

(4) Google diabetic retinopathy (2016)

- 8 Prediction of 1-y all-cause mortality (2017)
 - (15) CASNET (1982)
 - 16 DXplain (1986)

Expert AI systems

14 MYCIN (1975)

Framingham CV risk score (1998) Randomized Clinical Trials

- Celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis (2002)
 Use of estrogen plus progestin in healthy postmenopausal women (2002)
 -
- Other
- 22 Clinical wisdom
- 23 Mortality rate estimates from US Census (2010)

Beam A and Kohane I. JAMA 2018

MGH

MASSACHUSETTS GENERAL HOSPITAL

Corrigan Minehan Heart Center

Types of Genomic Data

Whole-Genome Genotyping	Whole-Exome Sequencing	Whole-Genome Sequencing		
Array with 100,000- 1 millions SNPs Imputation: >90 million SNPs	Coding part (1%) of the genome All exons of all genes	Entirety of the genome		
Common variation (allele frequency >1%)	Rare coding variation	Rare and Common disease Noncoding rare variation		
GWAS, Mendelian Randomization, Polygenic Risk Scores	Rare disease diagnosis, discovery of novel rare loss of function	Role of noncoding DNA		
~ 50 USD	~ 400 USD	~ 1500 USD		
Public data ++++++	Public data +++++++	Public data emerging		

Growth and Size of Molecular Data

The Rise of the Biobanks

13

UK Biobank 500,0000

biob improving the health of future ge		Call us on: 0800 0276 276 Mon-Fri 8am-6pm (Sat 8am-4pm) 💟 🛗						
interesting are neared or ruture ge						Search for research	1	Search
About Participants	Resources	Scientists	Data Showcase	Register & Apply	Research	Publications	AMS Login	Careers
JK Biobank is a national aims to improve the prev diabetes, arthritis, osteop and provides health infor please ensure you read t ealth. Without you, nom	ention, diagnosis porosis, eye diso mation, which do he <u>background</u>	s and treatmen rders, depress bes not identify <u>materials</u> befor	t of a wide range of s ion and forms of dem them, to approved n e registering. To our	serious and life-threate nentia. It is following the searchers in the UK participants, we say the	ening illness ne health and and oversea	es – including can d well-being of 500 is, from academia	cer, heart disea 0,000 volunteer and industry. S	ases, stroke, participants icientists,

Read more about Biobank UK

USA 1,000,000 USA 1,000,000

Biobank	Enrollment locations	Initial enrollment	Enrollment to date	Target enrollment	
Commercial funding					
deCODE Genetics (Amgen) (http://www.decode.com/)	Iceland	1996	>200,000	Unknown	
Geisinger MyCode® Community Health (Regeneron Pharmaceuticals and Others)	Geisinger Health System (Danville, PA)	2007	>50,000	Unknown	
Government funding					
China Kadoorie Biobank (http://www.ckbiobank.org/site/)	China	2004	>500,000	Enrollment Completed	
UK Biobank (https://www.ukbiobank.ac.uk/)	United Kingdom	2006	>500,000	Enrollment Completed	
Electronic Medical Records and Genomics (eMERGE) Network (https://emerge.mc.vanderbilt.edu/about-emerge/)	United States Hospital Sites	2007	>50,000	Unknown	
Million Veterans Program (http://www.research.va.gov/ mvp/)	Veterans Affairs Hospital	2011	>500,000	~1,000,000	
Precision Medicine Initiative (https://www.nih.gov/ precision-medicine-initiative-cohort-program)	United States	Early 2017		~1,000,000	
Institutional funding					
BioVu Biorepository (https://victr.vanderbilt.edu/pub/biovu/)	Vanderbilt University Medical Center (Nashville, TN)	2007	>215,000	Unknown	
Kaiser Permanente Research Bank (http:// researchbank.kaiserpermanente.org/)	United States	2016	>250,000	~500,000	
Partners Healthcare Biobank (https://biobank.partners.org/)	Partners Health Care (Boston, MA)	2010	>50,000	~100,000	

Democratization of Genomic Data

HOME RESEARCH PEOPLE MEDIA BLOG UK BIOBANK JOBS CONTACT

RAPID GWAS OF THOUSANDS OF PHENOTYPES FOR 337,000 SAMPLES IN THE UK BIOBANK

September 20, 2017

The UK Biobank recently released genome-wide association data on ~500,000 individuals. The genotype data for these samples have been cleaned, imputed and released to the scientific community. This public release of data represents an extraordinary advance for genetics, pushing the envelope for data sharing and rapid uptake by the research community. These data will be used for novel discovery of disease-associated genes, in the development of new methods, and to serve as an example for how future efforts in genetics and biology ought to proceed.

To further enhance the value of this resource, we have performed a basic association test on ~337,000 unrelated individuals of British ancestry for over 2,000 of the available phenotypes. We're making these results available for browsing through several portals, including the Global Biobank Engine where they will appear soon. They are also available for download here.

Ben Neale

UKBB GWAS bot

Polygenic Risk Scores (PRS)

Weighted sum of number of risk alleles carried by an individual

• Sum of the risk alleles (X)

Measured effects as detected by GWAS (β)

CAD Polygenic Risk Score LDpred method(>6 million alleles)

GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

17

P value

<1×10-300

<1×10-300

6.5×10-264

1.0 × 10-132

7.9 × 10⁻⁷⁸

2.1×10-177

 7.0×10^{-165}

1.1×10⁻¹⁵²

 2.9×10^{-84}

3.5 × 10-56

 3.1×10^{-201}

1.2×10-167

1.7×10-130

 1.4×10^{-49}

 4.3×10^{-30}

 7.7×10^{-95}

8.8×10-88

 3.0×10^{-68}

 1.4×10^{-43}

9.0 × 10-37

3.4×10-159

 2.3×10^{-148}

 2.1×10^{-112}

1.3×10-54

 8.2×10^{-38}

Atrial Fibrillation, Type 2 Diabetes, Inflammatory Bowel Disease, Breast Cancer

18

20% of the study population are at ≥ threefold

increased risk for at least 1 of the 5 diseases studied !

"The First" risk factor

Direct to Consumer Genetics

Khera AV et al. *Nature Genetics* 2018 https://pged.org/direct-to-consumer-genetic-testing/

Human Knockout Project

LETTER

doi:10.1038/nature22034

Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity

Danish Saleheen^{1,2*}, Pradeep Natarajan^{3,4*}, Irina M. Armean^{4,5}, Wei Zhao¹, Asif Rasheed², Sumeet A. Khetarpal⁶, Hong–Hee Won⁷, Konrad J. Karczewski^{4,5}, Anne H. O'Donnell–Luria^{4,5,8}, Kaitlin E. Samocha^{4,5}, Benjamin Weisburd^{4,5}, Namrata Gupta⁴, Mozzam Zaidi², Maria Samuel², Atif Imran², Shahid Abbas⁹, Faisal Majeed², Madiha Ishaq², Saba Akhtar², Kevin Trindade⁶, Megan Mucksavage⁶, Nadeem Qamar¹⁰, Khan Shah Zaman¹⁰, Zia Yaqoob¹⁰, Tahir Saghir¹⁰, Syed Nadeem Hasan Rizvi¹⁰, Anis Memon¹⁰, Nadeem Hayyat Mallick¹¹, Mohammad Ishaq¹², Syed Zahed Rasheed¹², Fazal–ur–Rehman Memon¹³, Khalid Mahmood¹⁴, Naveeduddin Ahmed¹⁵, Ron Do^{16,17}, Ronald M. Krauss¹⁸, Daniel G. MacArthur^{4,5}, Stacey Gabriel⁴, Eric S. Lander⁴, Mark J. Daly^{4,5}, Philippe Frossard²§, John Danesh^{19,20}§, Daniel J. Rader^{6,21}§ & Sekar Kathiresan^{3,4}§

Safety check for drug development

- Exome sequencing of 10,503 Pakistani subjects
- Identify individuals carrying predicted homozygous loss-of-function mutations
- Perform phenotypic analysis of >200 biochemical disease traits
- e.g. APOC3 hom pLoF low fasting TG and blunted post-prandial lipaemia

Phenome Wide Association Studies (PheWAS)

Association of SNPs with

Medical

Diagnoses and

Clinical Measures

in the EHR

Clinical Lab *Asime Amolinanterase *Asime Amolinanterase *Asime Programase *Apartae Amolinanterase *Casime *Device +Frequencies *Device *Provide *Device *Provide *Device *Dev

Pitfalls of Big Data and ML

- Improved generation of hypotheses
 - But burden of proof remains on the basic scientist
- Polygenic risk implementation in care
 Will it change outcomes?
- Biobanks phenotypic classification (case/control definitions)
- EHR/Administrative data has inherent biases of observational data
 - Informative missing data
 - Risk of false positives and negatives (i.e. misclassification)
 - Treatment selection bias i.e. unmeasured confounding variables

Data Science in Academic Health Centers

Doctors have a 'hunch' and it matters!

Doctors rely on more than just data for medical decision making

Computer scientists find that physicians' "gut feelings" influence how many tests they order for patients.

Watch Video

Anne Trafton | MIT News Office July 20, 2018

RELATED

Opportunity for Academic Health Centers

The triple aim: care, health, and cost

- Data Science as part of the framework of translational research
- Essential basic, translational and epidemiologic research for new technologies
- Unique partnerships with industry
- Products that are cost-effective, scientifically solid, and needed to advance patient care

The new med school classroom?

- Computationally-Enabled Medicine
- "Pathways" curriculum
- Harvard Medical School
 <u>3rd year</u> students

https://hms.harvard.edu/news/knowing-unknown

Thank you

fahed@mail.harvard.edu

Acknowledgements:

NIH NHLBI Sekar Kathiresan, MD

William S. Weintraub, MD John S. Rumsfeld, MD, PhD

Corrigan Minehan Heart Center

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Massachusetts Institute of Technology

Figure: Analogy Between a Mendelian Randomization Study and a Randomized Trial

Ferrence PA. ACC.org Expert Analysis

Clinical risk Combined risk **Polygenic risk** + = Action threshold 100th Clinical risk and Cholesterol: per 40 mg/dl increase 80th . Clinical risk and intermediate PRS percentile polygenic risk Intermediate 50th Smoking: per 50 cigarettes/day polygenic risk Clinical risk and low polygenic risk Systolic blood pressure: 20th Clinical risk and per 20 mmHg increase unmeasured Low polygenic risk polygenic risk 0th 0.33 0.50 0.67 Population 1.5 2.0 3.0 0.33 0.50 0.67 Population 1.5 2.0 3.0 incidence incidence CAD relative risk CAD relative risk CAD absolute risk

Torkamani A et al. Nature Reviews Genetics 2018

MASSACHUSETTS GENERAL HOSPITAL

Corrigan Minehan Heart Center

Timeline of Molecular Data

Precursor to 1958 First crystallog 1963 I	inve ptron invented o neural networks.	1977 F seque 1977 F (PDB) 1	First DNA genome nced (viral) Protein Data Bank launched 980 MRI image rst used in clinic	networks LeCun prop	ow to correctly etworks. I Winter" argue that will fail to iguage. volutional neural invented osess a layer for , trainable by	to predict 2001 inver 2001 sequ 2001 on co Deve	current networks used t protein contact maps I Random forest nted I Human genome lenced I Fast matrix multiply ommercial GPUs elops into an enabling nology for deep learning.	editing tec 2012 Dee Molecular 2012 Dee ImageNet 2014 C networ 2014 C	chnology invented p learning wins Merck Activity Challenge p learning wins	 2017 Deep learning improves short-read DNA variant calling 2018 Deep learning improves in-hospital mortality prediction from electronic health records 2018 Deep learning improves template-free protein structure prediction 2018 Deep learning beats dermatologists at detecting skin cancer
1953 DNA structure discovered	1969 "Al Winter" b Minsky & Papert prove that single-layer perceptrons cannot lea many simple functions Neural network resear falls out of favor.	arn s.	 1982 Perceptron used for gene-finding Stormo trains perceptron to detect translation initiation sites of <i>E. coli</i>. 1982 Genbank database launched 	1987 Sanger 9 sequencing commercialized	1997 Long sterm memor networks im 1995 Wake-sle deep autoenco 1995 Support v machine (SVM) 1995 Microarra used for genoty	ep for oders vector) invented ay first	2007 ChIP-seq ir A wave of large data related methods ens 2005 First genome-wid	nvented asets and sues. de AS)	high-content 2016 Deep la diabetic retin 2016 Deep la in commercia 2015 Human genome 2015 Deep learning in	earning improves microscopy screening earning improves lopathy screening earning improves base calling al nanopore sequencers sequencing for \$1000 mproves protein binding prediction oosts power of Alzheimer's ed patient enrollment

Wainberg et al. Nature Biotechnology. 2018

"Machine Learning should try to do:

1- What doctors <u>cannot</u> do

2 What doctors do NOT what to do "

Not all Data are Created Equal

Low Quality for ML

- EHR
- Administrative Data

Good Quality for ML

- Image interpretation
 - -CT
 - -MRI
 - Echocardiography
- Detection of Dysrhythmias
 - Cardiac rhythm
- Wearables/Biosensors
 - HR/ Other physiological data
- Molecular data